本文共3535字,预计阅读时间8分钟。
为了跟老总汇报,把自己的抖音视频刷个几百万个“看”和几十万个“赞”倒可以滥竽充数,但想要把这个视频直接刷上抖音热门,别试了,没用!
前言:
最近三个月,给十多家企业讲内训课,各种出差,所以你们看见我的文章产出甚是稀疏了。其实想写的文章好多,但是时间有限,于是交给了我的朋友根据我认为有趣的主题帮我撰文,我再来更改初稿。这篇文章就是来自我的朋友张依侬首发在夸克网(公众号:kuakeer)上的文章,但在发表到我自己的微信公众号上的时侯,我做了内容的校对和行文的更改。
全文目录:
抖音推荐的逻辑
“元初推荐”的逻辑
抖音刷赞能上热门是不是智商税?
刷粉可行吗?
漏网之鱼!?
刷给老总看?
做抖音都绕不开谈抖音推荐算法这个话题。但为何同是短视频的龙头老大,就极少有人讨论快手的推荐算法呢?
这是平台定位不同而引起的。在抖音上一战成名的故事每晚都在发生,去中心化的叠加推荐算法让流量不断倾斜:强者越强,弱者越弱。即使是0粉丝的新号,也有可能意外夺得千万的播放量。而快手更重视长尾视频的分发,不容易形成热卖。因此,做好“粉丝营运”是快手成功的核心,做好“内容创意”是抖音成功的秘诀。
抖音的算法核心是为播放量优化的算法。流量形成收入、收入订购内容、内容继续形成流量。播放量越高,用户时长越长,变现的可能性就越多。
所以,有些人开始寻思,有没有可能通过刷流量的方法,把抖音视频刷上热门,然后形成前面说的那个“强者越强的正向循环”。答案显然令“投机取巧”者沮丧。
抖音推荐的逻辑
一种观点是,了解抖音的推荐算法,按照算法的规则来,就能将自己的视频刷上热门吗!
非也!首先,真实的推荐算法抖音官方并没有对外公布,也不可能对外公布。但我们还是可以从同是头条系的今日头条的推荐算法和抖音运营者的经验总结,发现抖音算法的一些“真相”——抖音算法的基础逻辑。
首先,抖音的推荐算法最核心的点是:让更多可能会喜欢这条视频的用户都听到它。
为此,抖音是如此干的:给一个新视频分配初始流量,一般是给300-1000多个系统觉得会喜欢这个视频的用户推送你的视频。至于怎么选择这300多个初始用户,抖音首先会看你的这个视频适合于什么人群,然后再到这种人群中随机选择300多个。我们前面都会提到。
因此,下面这一点至关重要:由于抖音最初只找300-1000个用户当“小白鼠”,可以想见,这是所有可能对你的视频感兴趣的人群中极为微小的比列。这些人对你的视频的“感受”是十分重要的,几乎决定了未来你的视频有没有机会爆上去。
抖音怎样晓得这种人的体会呢?很简单,抖音系统按照这300-1000个人的反馈数据(完播率、点赞率、评论数、转发数、关注数等),决定是否继续向更多的用户推送你的视频。如果你的视频得到了这群初始人群的喜爱,那么抖音会扩大一次人群,再次让更多的人(大约10,000-100,000个人)看到你的视频,然后再记录那些人的反馈数据。如果这种人的反馈也不错,那么抖音会继续推荐更多的人听到你的视频,由此循环下去。
所以,有时候你的视频一下子就有了大几千,或者几万浏览量,就再也起不来了,说明小规模人群可能喜欢,觉得不错,更大规模的人群(1万-10万)这个规模的反馈通常,也就没有大爆发的可能性了。
因此,如果确实是一个高质量原创的视频,真的有可能得到每一个推荐人群的喜欢,这样才能始终得到系统叠加推荐,最终能够成为一个新品视频。反之,很快还会没有冲劲而萎顿出来。
没错!抖音的算法背后,就是这么典型的马太效应。
“元初推荐”的逻辑
系统是如何判定初始用户会喜欢什么视频的呢?主要就是借助它自己的推荐系统,涉及两个方面:用户标签和内容剖析。
抖音可以通过用户的第三方社交帐户登入信息、用户行为、位置授权信息和模型预测等方法。得出,用户的兴趣特点、身份特点和行为特点,以此构建用户标签。如下所示:
而内容剖析方面,一个视频不仅视频本身还包括:标题、描述、位置信息、封面图等这种也都可以进行剖析拆解,建立内容标签。
此时,抖音早已晓得你是谁,你喜欢哪些内容,并且也晓得视频的内容都是哪些,就可以进行系统推荐了。
其中系统的推荐流量的大约参考数据如下所示,实际可能界定更细致:
上述主要是说明,发布的新视频在抖音算法的推送下是怎样成为热门视频的。此外,还有一个情况是系统“挖坟”,也就是发布许久的视频,突然爆了。
原因一是系统会重新挖掘数据库中优质的内容,如果你的视频足够优质被系统重新挖掘,再次推荐。此时,路径就和上述流程类似,重新上热门。
原因二是新品效应,当你某个视频上热门后,用户可能会沿着你的抖音号,翻看之前的视频。点赞评降低,重新激活系统推荐。因此,也很有可能上热门。
除了向个人推荐外,还有向一类人推荐某类视频的协同推荐算法。这个算法可以避免给用户推荐的内容过分单一,帮助用户发觉更多可能会喜欢的视频。有相像用户特点的AB二人,B还喜欢健康类的短视频,那么系统就猜想A也可能感兴趣,因此会向A进行尝试推荐。
你可能早已能明白,这就是普通的相似度人群推荐嘛。没错。
抖音刷赞能上热门是不是智商税?
是不是智商税,因目的而异,就像我后面说的,如果是“刷给自己的老总看”还是有价值的。但想要把一个烂视频刷到热门上,那真是太不可能了。
当发布一个新视频的初始流量由两个部份组成:
向该帐户已关注的粉丝推送,但并非全部大约比列5~10%;
系统流量池分配的流量。
如果刷量的操作,可以“sao”到把系统流量池分配的流量个个命中的话,那肯定能把一个视频刷上热门。可是,前面也讲了,1000人的初始流量,占所有可能对这个视频感兴趣的人的比列这么之低,因此肯定不可能都是刷量公司自己注册的用户。更何况,刷量操作通常都是群控的机器人,抖音对那些用户很有可能早已打了问号,它们才能被作为初始用户的几率更是比普通用户低。
所以,刷量如何能把量给刷起来?只能说机率的可能性不是零但无限趋近于零。无论是机器刷的还是真人帐号刷的点赞,都是系统分配之外的。即使这个视频的点赞值刷起来,但是因为不在系统分配的流量内,也不会有加成。抖音其实未公开算法细节,但有防作弊系统是肯定的,同时,算法也始终在不停更新。此外,这套防作弊系统或可以从包括日在线活跃时长及点击频度等在内的多维度进行剖析。一旦被检测下来那些群控的刷量帐号就有被限流甚至被封号的危险。
刷粉可行吗?
和刷赞的情况一样,初始的流量的构成导致刷粉对帐号的伤害极大。
如果抖音帐户的粉丝是由刷粉而至的,在后续更新的视频中,如果向那些粉丝推送,数据反馈难保证。这会导致初始流量赛道中,新视频的数据表现会很差,进而难步入下一层级的流量池。
更糟糕的情况是,这些中级真人活粉丝堪称是真实用户行为,但她们的用户标签与你抖音帐户的目标用户标签并不一致。
在协同推荐中,即向同一类人推荐你的视频时,这些假粉丝的标签会促使系统错判。简单的说,系统会向不会喜欢你的视频的人进行推荐,数据反馈差同时你的帐户属性也会显得混乱。
前面早已讲过,抖音的推荐算法是通过打标签的形式对用户和视频进行辨识匹配。而假粉丝的用户标签会干扰这一个过程,甚至会影响系统算法的判别。对一个想要常年营运的帐号来说,刷粉实在得不偿失,甚至让自己的帐号无法翻身。
漏网之鱼!?
我们搜索发觉宣扬刷赞刷粉能上热门的几乎都是该项业务的推广软文。可以看见,这份上热门套餐的内容,有一个上热门几率。确实也存在一部分靠刷赞刷刷墙上热门,推测一是本身这个视频具备上热门的要素;推测二,在人工初审推荐环节,被刷量的数据蒙蔽,被人工推荐成功因而提高了上热门的概率。
500粉丝+1000赞+500分享+100评论+1万播放(上热门机率25%)
1000粉丝+2000赞+1000分享+200评论+3万播放(上热门机率35%)
1500粉丝+3000赞+1500分享+300评论+7万播放(上热门机率65%)
3000粉丝+6000赞+3000分享+600评论+12万播放(上热门机率75%)
1万粉丝+3万赞+1万分享+2000评论+50万播放(上热门机率85%)
其实,上热门机率这个说法用了“概率”,不就说明刷量者自己心中也没谱吗?
相信我,烂视频如何刷都没用,好的内容创意才是抖音的本质。用心拍摄,抓住用户的兴趣点才有可能真的上热门。
刷给老总看?
既然刷量对抖音帐户的常年营运无效,为什么还有人要刷量呢?
其实,从之前刷屏的文章《一场新媒体大鳄编剧的“僵尸舞台剧”,真实还原现场,导火线:一条一夜爆红的视频,我们的流量却为0!》我们就可以晓得,有买卖的地方就有刷量的市场。虚假KOL为了完成乙方的投放目标,很有可能直接订购一个刷量套餐,刷出一个乙方妈妈满意的数据。甚至,甲方那边,尤其是大公司,为了“汇报报告"上的数据漂亮,甚至主动自己刷量。因为真实的转化疗效怎样,反正品牌广告一时半会又突显不下来,反正数字好看就行了,所以——嗯,刷量,真香。
广告主的老板们,一定要擦亮眼睛。
-往期好文-
点击文字即可阅读
-资料下载-